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The parameter-space concept for solving crystal structures from reflection

amplitudes (without employing or searching for their phases) is described on a

theoretically oriented basis. Emphasis is placed on the principles of the method,

on selecting one of three types of parameter spaces discussed in this paper, and

in particular on the structure model employed (equal-atom point model,

however usually reduced to one-dimensional projections) and on the system of

‘isosurfaces’ representing experimental ‘geometrical structure amplitudes’ in an

orthonormal parameter space of as many dimensions as unknown atomic

coordinates. The symmetry of the parameter space as well as of the imprinted

isosurfaces and its effect on solution methods is discussed. For point atoms

scattering with different phases or signs (as is possible in the case of X-ray

resonant or of neutron scattering) it is demonstrated that the ‘landscape’ of

these isosurfaces remains invariant save certain shifts of origin known

beforehand (under the condition that all atomic scattering amplitudes have

been reduced to 1 thus meeting the requirement of the structure model above).

Partly referring to earlier publications on the subject, measures are briefly

described which permit circumventing an analytical solution of the system of

structure-amplitude equations and lead to either a unique (unequivocal)

approximate structure solution (offering rather high spatial resolution) or to all

possible solutions permitted by the experimental data used (thus including also

all potential ‘false minima’). A simple connection to Patterson vectors is given,

also a first hint on data errors. References are given for practical details of

various solution techniques already tested and for reconstruction of three-

dimensional structures from their projections by ‘point tomography’. We would

feel foolish if we tried to aim at any kind of ‘competition’ to existing methods.

Having mentioned ‘pros and cons’ of our concept, some ideas about potential

applications are nevertheless offered which are mainly based on its inherent

resolution power though demanding rather few reflection data (use of optimal

intensity contrast included) and possibly providing a result proven to be unique.

1. Introduction

A procedure for the determination of a crystal structure shall

be described which avoids the intermediate step of a Fourier

synthesis of an approximate electron density and instead

attempts to obtain the mu atomic coordinates Xj = (xj, yj, zj)
t,

j = 1, . . . , mu directly from the structure amplitudes. The

solution of the phase problem thus becomes obsolete. Such a

procedure may be helpful in cases where only a restricted

number of Fourier coefficients is available by means of

experimental limitations; their Fourier sum gives no sufficient

approximation of the scattering density or if the local reso-

lution of the density map is too poor or if multiple solutions

have to be explored and discussed (‘homometry’, ‘false

minima’). Procedures of this kind already exist since long ago.

Extensive citations may be found in the references of Fischer

et al. (2005) (hereafter FKZ I). Closest to the idea presented

here is the proposal by Navaza & Silva (1979) discussed in

short in x3.1.

There is apparently no urgent need of a ‘new’ concept for

crystal structure determination thanks to the overwhelming

success of the ‘direct methods’ and the perfectly working

program systems based on them which permit routinely

assessing crystal structures. However, any solution principle

based on Fourier inversion sometimes leaves unsatisfactory

answers to one or more questions. In particular, owing to the

strategy of direct methods, there is generally no guarantee that

a solution found is unique (unequivocal). Also the spatial

resolution [notoriously limited by |h|max = (2sin �/�)max, i.e.

series-termination errors plus errors in the data] may be



insufficient, e.g. in some cases of pseudo-symmetry. Searching

for a method providing unique solution and higher resolution

(perhaps with even fewer data) led one of us to refer to the

concept of Ott (1927) and to develop it a little further on the

basis of an equal-atom point structure (Knof, 1989; Pilz, 1996;

Fischer & Pilz, 1997; Pilz & Fischer, 1998, 2000; see also x3.2).

As expected, both higher resolution and unique results could

be attained (in principle as well as in practice) by solving for

the roots of a polynomial; however, this is at the expense of a

sincere drawback caused by three ‘weak points’:

(i) The coefficients of the polynomial contain powers of

point structure amplitudes increasing up to the number of

unknown parameters, thus becoming sensitive to all kinds of

data errors for structures with even moderate numbers of

atoms.

(ii) For establishing the polynomial, the first reflection order

amplitude is essential.

(iii) The determination of signs (or phases) could become

uncertain for problems with many atoms (although in these

cases all possible sign combinations are found at the same

time).

Looking around for a concept using all data at the first

power only, the parameter-space idea was born.

From amplitudes alone, however, merely interatomic

vectors can be determined, at least in principle, i.e. one is

restricted to a ‘kind of Patterson’ solution type. How this

problem is overcome will also be discussed.

In this paper the task of structure solution is simplified to

equal-point-atom structures (x2 and x3) and two ideas are

combined: the orthonormal ‘parameter space’ of the vectors of

the independent variables with the conventional scalar

product in Rm (x4.1), and the ‘isosurfaces’ (x4.2). Properties

and applications are discussed in x4–x8. In x4.3 we shall relax a

few of the above restrictions.

Some ideas of this concept including examples of practical

solution techniques have either been published before, e.g.

FKZ I, Kirfel et al. (2006) (herafter FKZ II), Fischer et al.

(2008) (hereafter FKZ III) and Kirfel & Fischer (2009)

(hereafter FKZ IV), or have appeared as meeting abstracts. In

this paper we offer a condensed theoretical background with a

scope wider than just aiming at direct practical use. Therefore,

we shall not discuss different solution techniques in detail.

Emphasis is rather placed on the basis of our concept and

deducing from it different options for reaching or approaching

a structure solution in the parameter space which hitherto was

considered too cumbersome from a numerical point of view

[see, for example, the highly esteemed book of Stout & Jensen

(1970), pp. 300–301]. A few of these options are based on ‘‘our

forefathers’ old knowledge’’ (which nowadays can be

neglected for daily application because much of it is incor-

porated in present routine programs, perhaps unknown to

some users). A reader of this paper may possibly also find

some new insights into structure-determination principles

seen from the parameter-space point of view. We also want to

note explicitly that no kind of ‘contest’ with present-day’s

most efficient program systems is intended. Some of the

advantages of our concept may, however, offer chances in

certain critical cases of structure research which will be

mentioned in the summary.

2. The structure factor

By means of the structure factor the reduction to the least

number of dimensions of the ‘parameter space’ introduced

above will be shown. This number is always denoted by m,

independent of whether the crystal structure is one-, two- or

three-dimensional or a projection is considered.

2.1. Symmetry

The usual reduction of the mu atoms in the unit cell to the

representative atoms in the asymmetric unit reduces the

dimension m of the parameter space to 3m0,

FðHÞ ¼
Xm0

j¼1

fjðjHjÞ

jPtSðXjÞj

XN

n¼1

exp 2�iH RnXj þ Tn

� �� �
; ð1Þ

where N denotes the multiplicity of the general position of the

space group and |PtS(Xj)| gives the order of the site symmetry

group of the atom in position Xj .

Reducing all atoms to identical points of scattering power

f = 1 leads to the so-called ‘geometrical structure factor’

GðHÞ ¼
Xm0

j¼1

1

jPtSðXjÞj

XN

n¼1

exp 2�iH RnXj þ Tn

� �� �
: ð2Þ

For space groups containing P�11 as a subgroup with a centre of

symmetry in the origin, the problem can be simplified further.

In the case of P�11 the structure-factor equation takes the form

FðHÞ ¼ 2
Pm0

j¼1

fjðjHjÞ cos 2�HXj

� �

þ
P

x;y;z2f0; 1=2g

fxyzðjHjÞ ocfðx; y; zÞð�1Þ2ðxþyþzÞ; ð3Þ

where ocf(x, y, z) denotes the occupation factor (usually 0 or

1) of the special position x, y, z with x, y, z 2 {0, 1/2} and m0

counts the points in the asymmetric unit. Correspondingly,

GðhklÞ ¼ 2
Pm0

j¼1

cos 2� hxj þ kyj þ lzj

� �� �

þ
P

x;y;z2f0; 1=2g

ocfðx; y; zÞð�1Þ2ðxþyþzÞ: ð4Þ

The centrosymmetric case will be preferred in this paper and

usually the occupation of special positions will be neglected.

(Special positions were discussed for the one-dimensional

centrosymmetric case in FKZ I, p. 654.)

2.2. Projections

A further reduction of the dimension can be achieved using

projections. [The reconstruction of the three-dimensional

information from the projections is a tomographic problem

and will be discussed in a separate paper. For intermediate

results see Fischer & Pilz (1997), Zimmermann et al. (2005,

2006) and FKZ IV.] For example, in the structure factors of the
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h00 reflections all x coordinates of the atoms in the unit cell

are encrypted, according to

Fðh00Þ ¼
Pmu

j¼1

fjðjh00jÞ exp 2�ihxj

� �
; ð5Þ

and in the same way for the geometric structure factor,

Gðh00Þ ¼
Pmu

j¼1

exp 2�ihxj

� �
: ð6Þ

If the list of the x coordinates (xj)j = 1, . . . ,m and the list of y

coordinates (yj)j = 1, . . . ,m have been found by means of

any procedure, the net for possible (x, y) positions is fixed

provided a common origin is given or found. The number of

(x, y) combinations for a two-dimensional structure is roughly

estimated by 2m(m!). Thus it is useful to think about further

restrictions even if one-dimensional solutions are known. In

principle, however, such a procedure is possible. The step into

the third dimension can be carried out in the same way. This

approach is the main reason why especially one-dimensional

structure factors and structure amplitudes are discussed below.

Further, this approach results in a special preference for the

one-dimensional centrosymmetric situation, as only three of

the 17 plane groups (p1, pm, p3) have acentric one-

dimensional projections on the axes of the conventional basis.

Also, only 54 of the 230 space groups have an acentric

projection on at least one conventional axis.

2.3. The one-dimensional structure-factor and structure-
amplitude equation

From the one-dimensional structure-factor equation,

FðhÞ ¼
Pm
j¼1

fjðjhjÞ exp 2�ihxj

� �
; ð7Þ

follows the reduced form of the geometric structure-factor

equation,

GðhÞ ¼
Pm
j¼1

exp 2�ihxj

� �
¼
Pm
j¼1

ejðhÞ ¼ Gr þ iGi: ð8Þ

The geometrical structure amplitude is defined by

gðhÞ ¼
���P

j

exp 2�ihxj

� ���� ¼ G2
r þG2

ið Þ
1=2
: ð9Þ

In the one-dimensional acentric case, no special positions

exist.

In the centrosymmetric case without special positions the

structure-factor equation can be simplified further,

GðhÞ ¼ 2sðhÞgðhÞ ¼ 2
Pm
j¼1

cos 2�hxj

� �
; ð10Þ

where s(h) denotes the sign and

gðhÞ ¼
���P

m

j¼1

cos 2�hxj

� ����

denotes the modulus of the geometric structure factor. (m

counts the atomic positions in the asymmetric unit only as in

x4.1.) If special positions (centres of inversion) are occupied

the term for the special positions has to be added,

2sðhÞgðhÞ ¼ 2
hPm

j¼1

cos 2�hxj

� �
þ ð1=2Þ

P
x2f0; 1=2g

ocfðxÞð�1Þ2x
i

ð11Þ

(cf. FKZ I, p. 654).

3. Parameter spaces

In spite of the fact that the practical treatment of the problem

will be handled using one-dimensional structure factors, the

following discussion treats the general case and will be

reduced to the one-dimensional case afterwards. The question

asked in this section is: how can the structure-amplitude

equation be resolved towards the atomic coordinates?

Different possibilities shall be discussed.

3.1. The space of parallel hyperplanes Fm

In a first step the structure-factor equation can be consid-

ered as a linear equation of the parameters ej(hkl) =

exp[2�i(hxj + kyj + lzj)],

FðhklÞ ¼
Pmu

j¼1

fjðjhkljÞ ejðhklÞ: ð12Þ

The structure factor thus can be considered as the scalar

product of an mu-dimensional vector of atomic scattering

factors with an mu-dimensional vector consisting of points of

the complex unit circle. If, for any j and three linear inde-

pendent reflections h1k1l1, h2k2l2, h3k3l3, the ej(hp,kp, lp) =

exp[2�i’j(hp,kp, lp)] (p = 1, 2, 3) are known, the ‘structure is

solved’, as from this information the matrix relation follows,

h1 k1 l1

h2 k2 l2

h3 k3 l3

0
@

1
A

xj

yj

zj

0
@

1
A ¼ 1

2�i

lnðe1Þ

lnðe2Þ

lnðe3Þ

0
@

1
A ¼

’jðh1k1l1Þ

’jðh2k2l2Þ

’jðh3k3l3Þ

0
@

1
A:

ð13Þ

It can be resolved by matrix inversion. This idea uses an mu-

dimensional complex parameter space Emu which has the

topology of the direct product of mu unit circles E, i.e. the

topology of a complex torus in the mu-dimensional space.

The difficulty with this approach is that different structure

factors determine different (parallel) hyperplanes and the

‘solution points’ on the different hyperplanes can only be

compared after the reduction to the unknown coordinates. To

find them, the calculation of the logarithms of the summands

of the structure-factor equation is needed. Thus, this linear

approach is not apt for a direct solution of the structure.

However, just this approach was used by Navaza & Silva

(1979) for the analysis of Karle–Hauptman determinants.

They realized that a scalar product of two solution vectors for

h and k in Em can be defined such that a normalized structure

factor E(h � k) results. The metric tensor for this scalar

product can be shown to be a Karle–Hauptman matrix. The

inversion of this matrix can be used to solve the structure.
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3.2. The space of polynomials Xm

In the second stage the structure factor can be considered as

a polynomial in the variables ejq = exp(2�ixjq), j = 1, . . . , mu,

q = 1, 2, 3. The general form is

FðhklÞ ¼
Pmu

j¼1

fj e h
j1 e k

j2 e l
j3: ð14Þ

In the corresponding m-dimensional solution space Xm any

structure factor defines a hyperface (‘polynomial iso-

structure-factor surface’, for short: ‘polyface’). This space also

has the topology of the surface of an m-dimensional torus. The

solution of a structure is the intersection point of at least m

polyfaces.

In the centrosymmetric case the structure factor is a real

number but the equation becomes more complex because the

powers of the exponential terms turn into trigonometric

polynomials with a lot of terms.

In the one-dimensional case with

FðhÞ ¼
Pm
j¼1

fj e h
j ; GðhÞ ¼ gðhÞ exp½i’ðhÞ� ¼

Pm
j¼1

e h
j ; ð15Þ

we find the equations which are the initial step of the method

of Ott (1927) and Avrami (1938, 1939) on the basis of Cara-

théodory’s solution (Caratheodory, 1911). Further attempts to

solve systems of structure-factor equations were made by

Kutschabsky et al. (1971). For a new mathematical develop-

ment see DiPippo & Howe (2000), and for details see also Pilz

& Fischer (1998, 2000).

3.3. The space of trigonometric polynomials Qm

In a third step the m-dimensional space of coordinates xjq

can be chosen for a parameter space (m = dmu, where d = 1, 2

or 3 is the dimension of the crystal space and mu is the number

of atoms). The structure factor becomes a trigonometric

polynomial in this case,

FðHÞ ¼
Pmu

j¼1

fjðjHjÞ exp 2�iHXj

� �

¼
Pmu

j¼1

fjðjHjÞ cos 2�HXj

� �
þ i

Pmu

j¼1

fjðjHjÞ sin 2�HXj

� �
:

ð16Þ

The parameters xjq, in principle, span the real space Rm. As

the structure factor is periodic it is sufficient for each para-

meter to consider the m-dimensional unit cell, 0 � xjq < 1. The

remaining parameter space (again using the orthonormal basis

of Rm) is an m-dimensional ‘cube’ [0,1[m which is denoted by

Qm. Again, the hyperfaces defined by a special value of the

structure factor, isosurfaces for short (in FKZ I denoted by

M[h;c]), intersect in the solution point. At least m isosurfaces

are necessary to fix a solution point. Some remarks with

respect to the algebraic structure of the parameter space are as

follows.

(i) The description of a structure as a vector X in the

parameter space means that the parameter space is the direct

sum of mu copies of the crystal space.

(ii) The addition of a fixed vector T to the coordinates in

crystal space corresponds to an addition of a vector T mu :=

(t1, t2, t3, t1, t2, t3, . . . , t1, t2, t3) to X. In this way a shift of origin

works in the parameter space. Especially in the case of one-

dimensional structures all copies of a structure which only

differ in the choice of origin form a straight line in the para-

meter space parallel to the main symmetry axis [1, 1, . . . , 1].

(For acentric structures, the ‘inverse solutions’ are arranged

on a second line.) A further application will be shown below in

the context of negative and complex scattering factors.

(iii) Any space-group operation (R|T) modulo Z3 corre-

sponds to a permutation of the indices of the components of X.

Thus the space group operates on the parameter space as a

subgroup of the symmetric group Smu, the group of all

permutations of mu elements. Thus it will be useful to choose

the sequence of the list of atoms in groups of symmetrically

equivalent atoms as the parameter space will be decomposed

into symmetry subspaces.

By specializing the case of the section above, the situation

becomes easier in the centrosymmetric case,

FðHÞ ¼ 2
Pmu=2

j¼1

fjðjHjÞ cos 2�HXj

� �
; ð17Þ

and the parameter space can be reduced from Qm := [0, 1[m to

Pm := [0, 1/2[m. This form of the structure factor is thus the

starting point for our investigations, especially in the one-

dimensional crystal space. By using it in the form of the

geometric structure amplitude the maximum permutation

symmetry in the parameter space can be achieved.

4. Symmetry and some properties of isosurfaces in the
parameter space

For easy understanding of the following we found it useful to

refer to some well known trivial features of the structure-

factor equation.

4.1. Symmetry and asymmetric unit

The parameter spaces have the conventional orthonormal

metric of Rm. The symmetry discussion can easily be

performed for the general case of three-dimensional struc-

tures. As we will use the results in the one-dimensional case

only, it shall be developed for this case below.

The symmetry of the structure factor in the parameter space

has two sources:

(i) The symmetry properties of the exponential and trigo-

nometric functions,

(ii) the commutativity of the addition.

The basis for case (i) is the frieze symmetry pm(g2) [the

aperiodic parts of the symbol are written in parentheses

according to Bohm & Dornberger-Schiff (1967)] of the graphs

of trigonometric functions, i.e. the fact that the values of all

trigonometric functions can be reconstructed from the values

of cos(2�x), with x 2 [0, 1/4[: From, for example,

research papers
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cosð2�xÞ ¼ sin 2� xþ 1
4

� �� �
¼ � cos 2� 1

2� x
� �� �

¼ cos½2�ð1� xÞ�; ð18aÞ

it follows for the general exponential function

exp½2�iðxþ p=4Þ� ¼ i p expð2�ixÞ with integer p: ð18bÞ

In both cases the main symmetry is the periodicity of these

trigonometric functions,

tðxÞ : tðxþ nÞ ¼ tðxÞ; ð18cÞ

for any integer n, which remains true for sums of such terms.

The results for the one-dimensional geometric structure

factor are:

(i) For acentric structures we use

GrðhjXÞ þ i GiðhjXÞ ¼ GðhjXÞ ¼
Pm
j¼1

exp 2�ihxj

� �

in the parameter space Qm, and (for centrosymmetric cases) in

the parameter space Pm with a volume reduced by a factor 2m

{because from equation (18a) the asymmetric unit of

GðhjXÞ ¼ 2
Pm
j¼1

cos 2�hxj

� �

is [0, 1/2] for any component xj of X}.

(ii) In both cases (centric and acentric) the geometrical

structure factor is invariant under all permutations of the

indices j of the xj . Thus the symmetric group Sm of order m!

operates on the parameter space. The asymmetric unit Am in

Qm and Am
\ Pm in Pm can be fixed by means of the condition

x1 � x2 � . . .� xm�1 � xm . According to this rule Am is a

convex region in Qm . It forms a simplex with a set of

(m + 1) corners: {(0, . . . , 0); (1, 0, . . . , 0); . . . (1, 1, . . . , 1, 0);

(1, . . . , 1)}. The volume |Am| is |Qm|/m! or |Pm|/m!, respec-

tively. As one-dimensional projections of three-dimensional

structures are considered, the overlap of atoms causing the

case xj = xj+1 cannot be excluded. Solutions of this kind will be

found on (lower-dimensioned) surfaces of the asymmetric

unit. (The above-mentioned reduction factor of m! is essential

for the actual CPU-time demand in structure determination.)

Cf. also DiPippo & Howe (2000).

(iii) Further, g(h|X) has translation symmetry because of

equation (18c). The translation lattice is �h := {t| t = z/h, z 2

Zm}. The volume of the asymmetric unit for this single h is thus

reduced by a factor 1/hm.

(iv) From equation (18b) it results that I 02 := (1/2h)(1, . . . , 1)

is an antisymmetry translation in Qm for any G(h|X), i.e.

G(h|X) =�G(h|X + I 02). For the modulus g(h|X) of G(h|X) it is

thus a true centring translation. The volume of the asymmetric

part is reduced by a further factor 1/2. In the centrosymmetric

case, it follows from the same argument that I 04 :=

(1/4h)(1, . . . , 1) is an antisymmetry translation; it is a true

translation, however, for the structure amplitude.

4.2. Geometric properties of g(h)-isosurfaces

4.2.1. Scaling symmetry (negligently called self-symmetry
in FKZ I). Comparing

gðhjXÞ ¼
���P

m

j¼1

cos 2�hxj

� ���� and gð1jXÞ ¼
���P

m

j¼1

cos 2�xj

� ����

shows that the graphs of both functions only differ by a scaling

factor h, or 1/h respectively, applied to the coordinates xj [cf.

Figs. 3(a)–3(d) of FKZ I]. Thus all scale-invariant geometrical

properties of g(h|X) can be investigated considering g(1|X).

The same holds for the noncentrosymmetric case.

4.2.2. Tangent hyperplanes (for centrosymmetric struc-
tures only). For the tangent planes it is easier to consider

G(1|X) and to discuss the behaviour at the points with G(1|X)

= 0 separately. The tangent hyperplane of G(1|X) in X0 is

given by the equation

Pm
j¼1

sin 2�x0j

� �
xj � x0j

� �
¼ 0: ð19Þ

Points of the half-integral lattice �1/2 = {X|X = 1
2 Z, Z 2 Zm}, e.g.

the corners of the asymmetric unit, are singular points and

have no well defined tangent hyperplanes. For the edges of the

asymmetric unit given by {(x0, 0, . . . , 0), (x0, x0, 0, . . . , 0),

(x0,x0,x0, 0, . . . , 0), . . . } for the coordinates (x1, . . . , xm) of

the points in the tangent hyperplane we find the equations x1

� x0 = 0; (x1� x0) + (x2 � x0) = 0; (x1 � x0) + (x2� x0) + (x3�

x0) = 0; . . . . As we have chosen an orthonormal metric in the

parameter space, these equations show that the tangent

hyperplanes are always orthogonal with respect to the edge

vectors of the asymmetric unit. This result may be helpful if

linear approximations of the isosurfaces are used. The scaling

symmetry shows that this is true for any G(h|X). Except for

the points where G(h|X) is zero, the same arguments are true

for all g(h|X).

4.2.3. Zero values ofG(1|X). Centrosymmetric case. For X =

(1/4, 1/4, . . . , 1/4): G(1|X) = 0 for any m. Also the straight lines

given by (x, 1/2 � x, 1/4, . . . , 1/4) and its permutations consist

of zeros of G(1|X). For m > 2 the zero isosurface of G(1|X) = 0

is curved but it contains these straight lines. The importance of

structure factors with value zero is that they need no phase.

Each G(h|0) or g(h|0) thus principally reduces the dimension

of the problem from m to m � 1 (Ott, 1927) so that m such

observations uniquely define the solution. For small deviations

(g ’ 0) see the end of x6.1.

Noncentrosymmetric case. Isosurfaces for G(1|X) = 0 are

(m � 2)-dimensional because both Gr and Gi must be zero.

4.2.4. Extremal points. Maxima of G(1|X) are the points

X 2 Zm, i.e. the points with integral coordinates. The maximal

value is m. For centrosymmetric structures, the minimum �m

lies in the point (1/2, 1/2, . . . , 1/2). Considering only ampli-

tudes g(1|X) in an ‘elementary cell’ Qm for centrosymmetric as

well as for noncentrosymmetric structures, we find these

maxima in points of a primitive lattice (noncentrosymmetric)

or in a body-centred one (centrosymmetric), respectively.

Each G(h|m) or g(h|m) thus reduces the structure solution to a
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known number of singular points in Am (or half of them after

origin definition).

4.2.5. Approximate behaviour. For centrosymmetric struc-

tures, from the approximation cosð2�xjÞ ’ 1� 2�2x2
j we

obtain

Gð1jXÞ ’
�

m� 2�2
Pm
j¼1

x2
j

�
;

gð1jXÞ ’
���m� 2�2

Pm
j¼1

x2
j

��� ¼ m
���1� 2�2ð1=mÞ

Pm
j¼1

x2
j

���: ð20Þ

This means that close to lattice points of the parameter space

the isosurfaces are hyperspheres of radius r = (1/�)t1/2 for g =

m � t (0 < t << 1), and can thus be described by a much

‘simpler’ function.

For the acentric case with the approximation exp(2�ixj) =

1 + 2�ixj � 2�2xj
2 we find

Gð1jXÞ ’
�

mþ 2�i
Pm
j¼1

xj � 2�2
Pm
j¼1

x2
j

�
; ð21Þ

thus on the hyperplane defined by
Pm

j¼1 xj ¼ 0 we find the

same condition as in the centrosymmetric case.

4.3. Different atomic scattering factors

The permutation symmetry of the parameter space of order

m! (imprinted on the symmetry of the system of isosurfaces) is

a consequence of the equal-point-atom assumption for our

structure model (simplified to fj = 1). Whenever this pre-

requisite is violated, the permutation symmetry is broken. This

causes less transparency of the problem and demands more

CPU time for solving a structure, both disadvantages

increasing with increasing m (see last paragraph of ‘Early and

recent concepts’ in FKZ I, p. 644). For this to happen it suffices

to introduce different fj being constant in reciprocal space

(different point scatterers without ‘thermal parameters’).

Thus, in x4.3.2 and x4.3.3, the scattering amplitudes of different

atoms remain standardized to 1 and the change is restricted to

their scattering phase.

4.3.1. Different scattering amplitudes, all positive. Assume

a centrosymmetric one-dimensional structure of two different

atomic species having, e.g.

fj ¼ f1 ¼ 1ð j ¼ 1; . . . ;m0Þ and

fj ¼ f2 6¼ 1ð j ¼ m0 þ 1; . . . ;mÞ: ð22Þ

The geometrical structure amplitude then reads as

gðhÞ ¼
��� f1

Pm0
j¼1

cosð2�hxjÞ þ f2

Pm
j¼m0þ1

cosð2�hxjÞ

��� ð23Þ

or

gðm; hÞ ¼ f1s1gðm0; hÞ þ f2s2gðm�m0; hÞ
�� ��: ð24Þ

All isosurfaces are changed. Merely three special positions

within Pm, namely at (0, 0, . . . , 0) and at (1/2, 1/2, . . . , 1/2)

representing gmax =
Pm

j¼1 fj plus the antisymmetry centre at

(1/4, 1/4, . . . , 1/4) representing g(1) = 0, retain their g(1) in

these positions. A simple case (m = 2, f1 6¼ f2, centrosym-

metric) is depicted in FKZ I, p. 654, Fig. 10.

Applying these changed isosurfaces would eliminate some

of the errors in the data-reduction process (namely those

connected with, for example, different neutron scattering

amplitudes having the same sign). Whether this outweighs the

increased computing demand owing to the reduced order of

permutation symmetry must be decided in each case. If, for

example, m0 atoms have fj = 1 and m � m0 have fj 6¼ 1, the

order of permutation symmetry is reduced from m! to (m0)! �

(m�m0)!. Consequently, given a problem with m independent

atoms, the binomial coefficient vA = m!/[m0!(m � m0)!] as

factor for increasing the volume of the asymmetric unit |Am|

has a minimum of vA = m for m0 = 1 (or m � m0 = 1 alter-

natively) and attains a maximum for m0 = m/2 (m even), vA =

(2m0)!/(m0!)2. Even for moderate m, perhaps a single heavy

atom [or at most two, entailing a factor of m(m � 1)/2] can

perhaps be tolerated. Therefore, and also because of its

analogy, we refrain from treating the acentric case in more

detail.

4.3.2. Different scattering signs (e.g. for neutron scat-
tering). From FKZ I (p. 654 and Fig. 11, again for the simple

m = 2 case with inversion centre) we learn that the overall

picture of the system of isosurfaces for g(h) appears

unchanged save a shift of origin by �/h in the direction of one

principal axis. Generalized to m = m0 + m� point atoms having

| f | = 1 and counting the m0 positive scatterers prior to the

negative ones, we obtain

gðh; m0jx1; . . . ; xmÞ

:¼
���P

m0

j¼1

cos 2�hxj

� �
�

Pm
j¼m0þ1

cos 2�hxj

� ����

¼

���P
m0

j¼1

cos 2�hxj

� �
þ

Pm
j¼m0þ1

cos 2�h½xj þ ð1=2hÞ�
	 
���

¼ g½hjx1; . . . ; xm0 ; xm0þ1 þ ð1=2hÞ; . . . ; xm þ ð1=2hÞ�:

ð25Þ

The isosurfaces for g(1; m0) are thus shifted by (0, . . . , 0,

�1/2, . . . , �1/2) (m0 times 0, m� times �1/2) compared with

the g(1) with all f = +1. This means that no new types of

isosurfaces occur.

Though this shift of origin disturbs the permutation

symmetry ‘in principle’, the latter may, however, be retained if

the shifted origin (a separate one for each h) is used thus

including a corresponding shift of the respective atomic

coordinates.

4.3.3. Different scattering phases [e.g. for resonant
(‘anomalous’) X-ray scattering]. The same arguments can be

used, this time in the acentric case, if some simple conditions

are observed. Assume fj = 1 ( j = 1, . . . , m0) for the normal

scatterers and fj = f 0 + if 00 = exp(2�i’j) ( j = m0 + 1, . . . , m)

with

ð f 0Þ
2
þ ð f 00Þ

2
¼ 1 and arctanð f 00=f 0Þ ¼ 2�’ ð26Þ

for the resonant atoms (‘anomalous scatterers’). Then

research papers

448 Zimmermann and Fischer � Structure determination without Fourier inversion. V Acta Cryst. (2009). A65, 443–455



gðh; m0jx1; . . . ; xmÞ ¼

���P
m0

j¼1

exp 2�ihxj

� �

þ
Pm

j¼m0þ1

exp 2�ih xj þ ’j=h
� �� �	 
���

¼ g
h

hjx1; . . . ; xm0 ; xm0þ1

þ ð’m0þ1=hÞ; . . . ; xm þ ð’m=hÞ
i
: ð27Þ

The isosurfaces for g(h) are thus shifted by (0, . . . , 0,

�’m0+1 /h, . . . , �’m/h) (m0 times 0, m � m0 times �’/h)

compared with g(h) with all f = +1. The complete geometry of

the isosurfaces and the asymmetric unit thus remains

unchanged save a shift of origin which depends on h. Compare

Figs. 1(a) and 1(b) for g(1) (without and with resonant scat-

tering) and Figs. 1(b) and 1(c) for g(1) and g(2) (resonant

scattering for different h). It is worth noting that from the

derivation above it follows that even different kinds of reso-

nant scatterers do not change the overall ‘landscape’ provided

correspondingly different ’ are considered. (How the

‘anomalous-dispersion contrast’ of Bragg scattering ampli-

tudes can be used within the parameter-space concept will be

treated in a separate paper.)

The net result of this section is a consequence of x3.3,

remark (ii), and may be summarized as follows. The ‘land-

scape’ of the isosurface system in the m-dimensional para-

meter space is independent of the phase ’j (including sign) of

the scattering factor fj of all independent point atoms under

the restriction that this scattering factor (may it be real,

negative or complex) has the same amplitude (usually | fj | = 1).

Compared with the isosurface system of a one-dimensional

structure with all fj = +1, the origin is shifted by a corre-

sponding �’j /h in each of the m directions. This result is

parallel to that of Cervellino & Ciccariello (2005), who proved

that different signs of neutron scattering amplitudes (which in

their derivation may also be different) do principally not

prevent a structure solution (thus the condition of ‘non-

negative scattering density’ for direct-methods-based phase

determination is overcome in general). By the above findings,

the scope of Cervellino & Ciccariello is even widened to atoms

exhibiting complex scattering factors, however restricted to

| fj | = 1. (The above-mentioned shift of origin by �’j /h is no

fundamental obstacle for solving a structure, though it adds, of

course, to the computing demand.)

5. Principles of structure solution

5.1. By intersection of isosurfaces

A point in the parameter space, representing a structure, is

fixed by the intersection of m isosurfaces. Analytically, this

means solving a system of at least m equations with trigono-

metric or exponential summands. The attempt to solve them

directly leads to difficulties even in the simple case of m = 4,

as the procedure involves ambiguous logarithms and inverse

trigonometric functions such that the variables cannot be
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Figure 1
Isosurfaces of g(1|X) for a one-dimensional acentric m = 3 structure, third
atom in x3 = 0, thus P3

! P2. Coordinate axis x1 horizontal, x2 vertical.
Contours at 0.2, isosurface for g(1|X) = 1.0 depicted as straight lines. (a)
All atoms f = 1. (b) f1 = f3 = 1, second atom: fa

0 = 0.95, fa
0 0 = 0.31! ’a =

0.0505: observe vertical shift of all isosurfaces by �0.05. (c) Same as (b)
but for isosurfaces of g(2|X): observe the vertical shift is halved.



separated easily. It is thus useful to consider geometric and

numeric approaches.

(a) Linear approximation. Pairs of parallel (m � 1)-

dimensional hyperplanes are calculated such that they

completely enclose the isosurface of a given ‘experimental’

g(h), the region between them thus holding the solution point

X. Intersection with corresponding regions leads to a ‘solution

region’ with linear boundaries. If this solution region is small

enough, its centre of gravity is a good approximation of X.

Some examples are given in FKZ I.

(b) Grid calculation. The direct procedure is to use a set of

known structure amplitudes g(h1), . . . , g(hn) and to choose a

system of grid points {Xj| j = 1, . . . , q} and a threshold t, 0 < t, in

the asymmetric unit of the parameter space and to calculate

the structure amplitudes g(h1|Xj), . . . , g(hn|Xj) for all grid

points. If for a g(hk|Xj) the difference |g(hk|Xj)� g(hk)| > t, the

point j is eliminated and the next grid point is calculated. If

after this procedure there are no grid points left, the proce-

dure has to be repeated with a refined grid. If there are points

left, a refined grid is introduced in the neighbourhood of these

points and the procedure is repeated. If there are too many

grid points which fulfil the condition, the threshold t has to be

diminished. After using some stopping rule a set of ‘permitted’

solution points should be left.

Such a grid procedure is (in principle) an extended ‘trial-

and-error’ technique and may need a lot of calculation time. It

is thus worthwhile to reduce the possible solution space. In

addition, up to now absolute values of g(h) were a prerequisite

which can hardly be met for a small batch of experimental

reflection data unable to provide a statistically sound Wilson

plot (see x5.2.1 and x5.2.2).

5.2. By reduction of solution regions

Two additional types of isosurfaces are introduced in this

chapter. Both are based on data combinations from a single

‘central reciprocal-lattice line’ and are on the ‘absolute’ scale.

Because of their geometrical complexity (compared with the

g-isosurfaces), they are of limited use for finding X directly by

intersection or approximation techniques; they are, however,

rather useful for confining possible solution regions in Am,

thus approximating a solution X.

5.2.1. Quotients of structure amplitudes and their isosur-
faces. (i) Definition and general features. Products of structure

factors are thoroughly investigated objects in crystallography,

especially those whose reflection indices form closed paths on

the reciprocal lattice, as their phase sums are invariant under

the shift of origin in direct space. No such algebraic properties

are known about quotients of structure factors; they play a

certain role if the scale factor cannot be fixed with sufficient

precision.

While the product F(H)F(�H) = |F(H)|2 gives the square

modulus of the structure factor (which is also invariant under

origin shifts), the quotient F(H)/F(�H) = exp{2�i[2’(H)]}

marks an arbitrary point on the complex unit circle. The

quotients of structure factors thus do not seem to be a useful

tool for structure determination. However, indeed the quoti-

ents of structure amplitudes are used already in crystal-

lography, namely for the results of powder diffraction. For use

in the JCPDS database the intensities of the reflections are

divided by the intensity of the strongest reflection and the

result is given as a percentage of the maximal intensity. This

sequence was recognized to be characteristic for the structure

and used for the identification in the database.

Again we will consider the one-dimensional centrosym-

metric case. For any structure vector X = (x1, . . . , xm) 2 Pm the

quotient q(h, k|X) of the structure amplitudes (first introduced

by Kirfel, see Kirfel & Fischer, 2005) is given by

qðh; kjXÞ ¼
gðhjXÞ

gðkjXÞ

¼

���
Xm

j¼1

cosð2�hxjÞ

����
���
Xm

j¼1

cosð2�kxjÞ

���: ð28Þ

The quotient is well defined at all points of the parameter

space where g(k|X) 6¼ 0. One advantage of using quotients is

that the problem of an unknown scale factor is eliminated.

The most interesting property of the quotients is that the

inequalities q(h, k|X)� c + " and q(h, k|X)� c� " (for some "
> 0) define regions in the parameter space within which the

solution of the structure cannot be found (‘forbidden regions’

in contrast to ‘permitted’ ones). As, except for the case

discussed above, the quotients are smooth functions, these

regions are rather regular and can be approximated using a

relatively coarse grid [although the corresponding isosurfaces

for given q(h, k|X) appear geometrically more ‘complicated’

than do those for the g(h|X)]. It is then a question of a clever

organization of the procedure to reduce the numerical effort.

(ii) Sequences of q(h, k). Assume n data g(h) from a ‘central

reciprocal-lattice row’, i.e. a series of harmonic reflections,

sorted according to decreasing g values. Call the strongest one

g(k1) and the smallest g(kn) and keep the ‘true indices’ h.

Then, two special sequences of independent q(h, k)� 1 (n� 1

each) can be formed: either a series with h = k2, . . . , kn and k =

k1 or with h = k1, . . . , kn�1 and k = k2, . . . , kn . Applying the

above-mentioned inequalities q(h, k) � 1 (separately for each

sequence) and intersecting the corresponding ‘permitted

solution regions’ provides a ‘confined solution region’ whose

centre (however selected) may serve as an approximate

solution. (For more details, see FKZ II and FKZ III.)

(iii) Dividing the parameter space by zero isosurfaces into

‘fields’. If (for centric structures only) any g(h) = 0 is intro-

duced as denominator, e.g. for calculating q, it causes an (m �

1)-dimensional jump discontinuity along its isosurface [where,

if signs are taken into consideration, the function calculated

(or a part of it) jumps from +1 to �1 normal to this

isosurface]. For instance, the parameter space of a given

q(h, k) using an experimental g(k) = 0 is thus divided into m-

dimensional regions (to be called ‘fields’) surrounded by these

(m � 1)-dimensional jump discontinuities. This is one of the

reasons why q-isosurfaces do not ‘invite’ simple approxima-

tions over a large range of parameter space. Within each of

these fields, no such discontinuity can occur and simple

approximations to isosurfaces are basically possible. [For
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superimposing isosurfaces for different h, see Kirfel et al.

(2006) (FKZ II) and Kirfel & Fischer (2009) (FKZ IV).]

5.2.2. Quasi-normalized structure amplitudes and their
isosurfaces. A second (and more preferable) option for

obtaining ‘experimental’ data called e(h, n) from unscaled g(h)

is offered through dividing g(h) by any average of a given

batch of n of those g(h), taken, for example, from a ‘central

reciprocal-lattice line’ and defined by

eðh; nÞ :¼
gðhÞ

ð1=nÞ
Pn

k¼1 g2ðkÞ
� �1=2

¼
n1=2gðhÞPn
k¼1 g2ðkÞ

� �1=2
ð29Þ

[‘quasi-normalized amplitudes’, the above being the best

option of various types of averaging; see Kirfel & Fischer

(2007) and FKZ IV for details]. Their corresponding isosur-

faces look even more ‘complicated in detail’ as are the

corresponding ones of q(h, k) and consequently ask for a finer

grid than the latter in ‘trial-and-error’ approximations.

Sequences of e(h, n) may be used as those of q(h, k).

5.2.3. Some general results of solution-space reduction by
inequalities. At the beginning it should be acknowledged that

Kirfel was the first to introduce both q(h, k) (Kirfel & Fischer,

2005) and e(h, n) (Kirfel & Fischer, 2007) as well as the new

inequalities [Kirfel et al., 2006 (FKZ II)] related to them.

From x5.2.1 and x5.2.2 it follows that each inequality

between different g(h) or between q(h, k) or between e(h, n)

defines (m � 1)-dimensional boundaries for a ‘permitted

solution region’ within Am. Consecutive overlay of these

regions confines more and more a ‘combined solution region’

(or a number of them). Whenever the region(s) obtained

appear(s) small enough, an approximate solution has been

found (or possible ones to be discriminated later). To attain

this, neither n � m data nor g(1) are necessary (though low-

order reflections may ease the confinement by reducing the

number of solution regions). Evidently, the higher the contrast

between the g(h) involved the fewer data may lead to a

‘refinable’ approximate X. These findings again confirm the

spatial resolution power of the parameter-space concept

whose use is not restricted by series-termination problems.

5.2.4. Use of a few known signs. In centrosymmetric

structures, origin definition by assuming a given sign for a

selected g(h) with h odd automatically excludes half of Am for

possible solutions independent of the numerical value of g(h)

[see Figs. 2(a)–2(d) for an m = 2 case]. The boundaries

between permitted and forbidden solution regions are taken

from ‘field boundaries’ of x5.2.1, (iii). Corresponding

(however different) fractions of Am are obtained for addi-

tional known signs s(h) of any g(h). By intersecting a few of

these ‘halves’, a drastic reduction of permitted solution

regions is obtained. For the sign combination s(2) = s(4) = +1

and s(3) = �1, for example, only 1/72 of A2 is permitted,

resulting in an error of ��x1,2 � 0.03 (Fig. 2e).

While the general result (which neglects knowledge of the

amplitudes) can just as well be assumed true for higher m, two

warnings are mandatory:

(i) All field boundaries owing to g(h) = 0 (in Fig. 2) are

‘weak’ ones owing to uncertainties of the zero values (see x6

below).

(ii) For m > 2, these boundaries are neither linear nor

equidistant and not yet explored in detail.

If in addition to signs the amplitude is also considered, the

dimension m of the problem is reduced by the number of

reflections with known signs and amplitudes as described

above for zero-intensity observations (x4.2.3). [In the example

of Fig. 2(e), the solution would thus be overdetermined.]

5.3. General result of a one-dimensional solution

Each asymmetric unit A of Q or P houses at least two

inverse (thus crystallographically equivalent) solutions as a

consequence of centring translations [see x4.1, (iv)]:

(i) In the acentric case, two solutions are related by inver-

sion either at the origin or at (1, 1, . . . , 1) causing xj 0 =�xj or 1

� xj , respectively. For centrosymmetric structures, the point

(1/4, 1/4, . . . , 1/4) acts as inflection point, causing �xj 0 = 1/2 �

xj . Consequently, only one half of the asymmetric part must be

searched through. The boundary separating the two halves
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Figure 2
Permitted (white) and forbidden (black) solution regions in A2 (lower left
triangle) of a one-dimensional centric m = 2 structure for four reflections
(coordinate axes as in Fig. 1): (a), (b), (d) s = +1; (c) s =�1; (e) overlay of
h = 1, . . . , 4. Observe the small solution area.



cuts normal to the main symmetry axis

[1, 1, . . . , 1] at (1/2, 1/2, . . . , 1/2) for

acentric and at (1/4, 1/4, . . . , 1/4) for centric

A, respectively. (In the latter case, the

isosurface for g = 0 may also be used

instead, see also x5.2.)

(ii) Additional equivalent acentric solu-

tions exist, if one of the point atoms (e.g. the

mth one) defines the origin. The dimension

of the parameter space is thus reduced by

one to Qm�1, and Am�1 as its asymmetric

part contains m � 1 additional solution

points owing to selecting each of the

remaining atoms for origin [a consequence

of x3.3, statement (iii)].

The combination of (i) and (ii) for the

acentric unit Am�1 results in 2m solution

points (see Fig. 3). Having safely located

any of them as the first one, the search can

be terminated thanks to the equivalence of

the others.

(iii) As to the question ‘how can atomic coordinates be

obtained directly from reflection amplitudes (instead of

interatomic vectors) without employing their phases?’, let us

assume a one-dimensional acentric m-atom problem with x1 �

x2 � . . .� xm�1� xm . Its Patterson vectors are defined as uij	

xj� xi (i, j = 1, . . . , m) forming the conventional m�m vector

set matrix (see Table 1) whose rows and columns represent

pictures of the structure as seen from different origins.

Defining the origin by the mth atom (xm = 0) thus simply turns

the mth row of the matrix into a solution (and the mth column

provides the inverse solution). Any other xj taken as origin-

definer trivially ‘produces’ an equivalent pair of solutions as

row and column numbered i = j thus resulting in the 2m

equivalent solutions [see (i) and (ii) above]. For a simple m = 3

case (the parameter space reduced to two dimensions, see

above), each of all six equivalent solutions depicted in Fig. 3

represents the coordinate components of one of the six non-

zero elements of a (3 � 3)-vector set (which, if generalized to

m � m, answers the question above). For a one-dimensional

centrosymmetric structure, Table 2 demonstrates an analogue

solution by subtracting from any row (or column) the corre-

sponding xj . As in any attempt to solve Patterson functions,

the key step is defining or finding an origin for the picture of

the structure. (Harker vectors, being very helpful in decon-

voluting a Patterson, do not show up explicitly in our concept,

however.)

6. Data errors

For easy formulae, we assume inversion symmetry (summa-

tion over m independent atoms j) and a few data from a

‘central reciprocal-lattice line’ [abbreviated by |Fobs(h)|], thus

Wilson statistics cannot be applied. (Generalization to any set

of two- or three-dimensional data or to acentric projections is

trivial.)

The discussion shall be restricted to errors of g(h) caused by

the ‘data-reduction’ process |F(h)| ! g(h) necessary for

applying the parameter-space concept. From the underlying

equal-point-atom model it follows that neutron scattering

amplitudes from any chemical compound need two approx-

imations for obtaining g(h) (different nuclear scattering

amplitudes and different thermal displacement parameters),

while, for X-ray structure amplitudes |F(h)| ! g(h), a

correction for the ‘theta fall-off’ of the atomic scattering factor

has to be added to the above.

The reduction of measured intensities I(h) into |F(h)| as well

as the derivation of standard experimental errors shall not be

addressed. Also, the problem of ‘absolute scaling’ is omitted as

it is solved according to x5.2.1 and x5.2.2, and standard error-

propagation routines can be applied there. [For analogies of

and differences between, for example, ‘quasi-normalized’

e(h, n)-values and the |E(h)| of direct methods, see FKZ IV.]
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Figure 3
All six equivalent solution points for a one-dimensional acentric m = 3
case, depicted as dots in A2. Observe their coordinate and symmetry
relations.

Table 1
Vector set matrix for an acentric structure with x1 � x2 � . . .� xm�1 � xm = 0 and ui, j := xj � xi .

0 u1,2 u1,3 . . . u1, j . . . u1, m�1 u1, m = �x1

u2,1 0 u2,3 . . . u2, j . . . u2, m�1 u2, m = �x2

u3,1 u3,2 0 . . . u3, j . . . u3, m�1 u3, m = �x3

..

. ..
. ..

. ..
. ..

. ..
.

ui,1 ui,2 ui,3 . . . ui,j . . . ui,m�1 ui,m = �xi

..

. ..
. ..

. ..
. ..

. ..
.

um�1,1 um�1,2 um�1,3 . . . um�1, j . . . 0 um�1, m = �xm�1

um,1 = x1 um,2 = x2 um,3 = x3 . . . um, j = xj . . . um, m�1 = xj�1 0 = xm

Table 2
Vector set matrix for a centrosymmetric structure (full unit cell, Harker vectors indicated in
bold).

u1, j 0 x2 � x1 . . . xm � x1 �xm � x1 . . . �x2 � x1 �2x1

u2, j x1 � x2 0 . . . xm � x2 �xm � x2 . . . �2x2 �x2 � x1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

um, j x1 � xm x2 � xm . . . 0 �2xm . . . �x2 � xm �x1 � xm

u�m, j x1 + xm x2 + xm . . . 2xm 0 . . . �x2 + xm �x1 + xm

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

u�2, j x1 + x2 2x2 . . . xm + x2 �xm + x2 . . . 0 �x1 + x2

u�1, j 2x1 x2 + x1 . . . xm + x1 �xm + x1 . . . �x2 + x1 0



6.1. Neutron scattering amplitudes

As a first step, the observed amplitudes |Fobs(h)| have to

be converted into ‘zero-Kelvin’ data |Fobs,0(h)| by using an

‘overall (Debye–Waller) temperature factor’ Bov which itself is

obtained from ‘individual estimated temperature factors’ Bj

for each atom,

jFobs;0ðhÞj ’ jFobsðhÞj exp þBov sin2 �=�2
� �� �

¼ jFobsðhÞj exp½þBovðsq1Þh2
�; ð30Þ

using

BovðhÞ ¼ � ln jFt;maxðhÞj=jF0;maxðhÞj
� �

=h2
ðsq1Þ ð31Þ

with

jFt;maxðhÞj ¼
P

fj exp �Bjh
2ðsq1Þ

� �
ð32Þ

and

ðsq1Þ ¼ sin2 �=�2 for reflection h ¼ 1; ð33Þ

and averaging all Bov(h) de gusto, e.g. by using h2 for

weighting. Bj can be estimated fairly well from chemical

experience. Assumed errors �Bj < Bj are transferred into

�Bov by conventional error propagation.

Second, converting |Fobs,0(h)| = 2|
Pm

j¼1 fjcos(2�hxj)| into

g(h) comprises averaging different nuclear scattering ampli-

tudes (here called fj in analogy to the following section on

X-ray data) providing, owing to the ‘unitary structure ampli-

tude’ Uobs(h) = |Fobs,0(h)| / 2
P

fj ,���P fj cos 2�hxj

� ���� ¼ UobsðhÞ
P

fj

’
P

fj=m
� ����P cos 2�hxj

� ����
¼

P
fj=m

� �
gðhÞ: ð34Þ

Thus, a ‘socializing’ of both fj and their individual geometrical

terms cos(2�hxj) takes place, indicated by ‘’’ in the above

expression. Errors introduced by this measure depend, of

course, both on the difference(s) of fj (constant for a given

structure in neutron diffraction data) and on the relative share

of the individual cos(2�hxj) within g(h) including their

different signs, these shares being different for each reflection

h [and their sign differences becoming less important the more

g(h) approaches m because for g(h) = m then cos(2�hxj) must

be either all +1 or all�1]. Thus, the errors introduced into g(h)

by this ‘data reduction’ can be more severe the smaller g(h) so

that for structures with different fj any g(h) ’ 0 obtained this

way should be used with caution.

6.2. X-ray scattering amplitudes

The ‘data reduction’ follows the same scheme as for neutron

diffraction. The different dependence of fj (sin �/�) and thus

fj(h) must be observed for each reflection separately in

equation (34). The above-mentioned ‘socializing’ of both fj

and their individual geometrical terms cos(2�hxj) is different

for each h for chemically different atoms. Thus, data-reduction

errors not only depend on the relative share of the individual

cos(2�hxj) in g(h) and on the difference(s) of fj, the latter may

also change for each h (owing to different ‘size’ of atoms)

giving rise to an additional source of errors in the resulting

g(h).

7. Homometry and quasi-homometry (‘false minima’)

Two structures are called homometric if their Patterson func-

tions, i.e. the sets of interatomic distances, coincide. Homo-

metric structures were a fundamental problem for early X-ray

crystallography as it raised the question as to whether the

results of a structure determination were unique. It proved,

however, that in practice homometry was a rather exotic

phenomenon. However, dealing with, for example, pseudo-

symmetric crystal structures, quasi-homometric structures had

to be considered, i.e. structures which cannot be distinguished

on the basis of a limited set of reflection amplitudes with

limited accuracy.

In these cases, a structure model found by conventional

methods is normally refined reaching a single minimum in the

�2 landscape of the actual parameter space. Without a

complete search of this multidimensional space (its asym-

metric part, and perhaps reduced to the geometrical para-

meters), a risk remains that this minimum might be a ‘false’

one. Any uncertainty is avoided by the parameter-space

concept discussed here, as it will provide all possible

(geometrical) solutions compatible with the structure ampli-

tudes. (In applying it to one-dimensional projections it should

be kept in mind that homometry, being extremely scarce in

three-dimensional structures, occurs statistically more

frequently upon each reduction of dimension by projection of

structures.)

8. Discussion and summary

As mentioned above, this parameter-space concept is based on

using Bragg reflection amplitudes [after data reduction to

g(h)] for assessing one-dimensional structures (or structure

projections) without searching for nor applying signs or

phases. As a consequence, the primary information which can

be obtained consists of interatomic distances, thus similar to

that from a Patterson function [see x5.3, (iii), for details].

Compared with a usual Patterson map, our results offer two

advantages, however. First, thanks to the point-atom model,

the spatial resolution is much higher (being infinite for error-

free data in principle) and according to ‘old knowledge’ any

perfectly resolved point Patterson map can always be

‘deconvoluted’ into the atomic arrangement. Second, a

noncentrosymmetric one-dimensional structure with one of its

m atoms in the origin automatically provides all possible

interatomic distances together with the coordinates, however

with 2m equivalent solutions in Am�1 [see x5.3, (i), (ii): all

solutions come into play during the reconstruction of two-

and/or three-dimensional structures].

In centrosymmetric one-dimensional projections, the origin

is fixed thanks to the Harker vectors (which are, however, only

indirectly contained in the solution), with a choice of two
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origins at x = 0 and/or 1/2 resulting in two ‘inverse’ solutions

contained in Am [see x4.1, (iv)].

It may be worth mentioning in this context that the

reconstruction of a three-dimensional structure from one-

dimensional projections also requires first finding or defining

an origin and then preserving it throughout the reconstruction

process (as is well known in tomography and other two- or

three-dimensional imaging). Details will be dealt with in a

separate paper.

Compared with Fourier methods, a few advantages and also

some disadvantages exist.

Advantages:

(i) The concept ‘as such’ appears rather simple, if not naı̈ve.

(ii) The phase problem is avoided.

(iii) The solution is complete: the coordinates of all atoms

appear ‘at once’.

(iv) Fewer reflections are needed than for a Fourier: neither

series-termination effects nor convergence problems will

occur.

(v) Even fewer than m reflections suffice for obtaining an

approximate solution (see below under applications).

(vi) The region(s) for possible solutions can be strongly

reduced by using few reflections, especially those with

maximum experimental contrast.

(vii) Zero observations can play an important role in the

solution process, in particular by permitting use of optimal

experimental contrast.

(viii) The first-order reflection has not necessarily to be

used.

(ix) The concept offers high spatial resolution: with at least

m + 1 (or 3m + 1) error-free relative amplitudes, the resolution

is ‘infinite’ (with errors, see below and ‘Disadvantages’).

(x) The solution is either unique or, if not, all possible

solutions which satisfy the experimental data are presented at

the same time (‘homometry’, extremely rare in three-

dimensional structures; however, statistically increasing for

two-dimensional and particularly for one-dimensional struc-

ture projections). For data with experimental or other errors

(‘quasi-homometry’), all ‘comparable false solutions’ are

found at the same time (including, of course, the correct one).

(xi) The procedure is strongly deductive, no probability

functions are employed.

(xii) It can also be applied to noncentrosymmetric struc-

tures.

(xiii) The phases of reflections defining one-dimensional

projections may, after solution by this method, increase an

insufficient collection of phases for direct methods (Kirfel’s

idea).

Disadvantages:

(i) The exponential growth of computing time with the

number of atoms reduces the application of the method to

rather small structures (see FKZ IV for present limits).

(ii) One of the consequences of the inherent high spatial

resolution is a correspondingly high vulnerability to data

errors from which the effective resolution may suffer.

(iii) The chemical composition (thus including m) and

the occupation of special positions must be known. (The

latter may be found by ‘trial and error’ as described in

FKZ I.)

(iv) The ambition to use only few experimental structure

amplitudes |F(h)| for structure solution gives a weak statistical

basis for the normalization of structure factors to structure

amplitudes of point scatterers.

(v) The same argument holds for determination or estima-

tion of the Debye–Waller factor.

(vi) Different atoms with equal or almost equal coordinates

will produce overlap in one-dimensional projections resulting

often in complications in the structure-search procedure. [If, in

a one-dimensional projection, n point atoms (of m) overlap

exactly, the solution point X is located at a boundary of Am

having an eigensymmetry of order n while ‘almost exact’

overlap results in X being close to that boundary.]

(vii) The development of this concept has not yet reached a

state that a program system could be conceived permitting

complete three-dimensional structure solutions without user

interference.

The parameter-space concept describes the well known

problem of structure solution as seen from another point of

view. Hence, quite a few minor points representing ‘trivial old

knowledge’ will be found in this context (e.g. the symmetry in

and other features of the structure-factor equation mentioned

in x2). This unconventional aspect gives rise to the ‘pros and

cons’ mentioned above. Possible applications thus emerge

from its main advantages in praxi (which may, of course, also

be combined) and may be subdivided into four categories

related to the following.

(i) Results can be obtained from rather few data:

(a) Incomplete data set (for whatever reason).

(b) Even an insufficient number of data (less than m) may

lead to an approximate solution region in the parameter space

small enough as basis for further work, e.g. by least-squares

refinement [see FKZ III (‘series of g, q or e . . . ’) and FKZ IV

(‘solving one-dimensional test structures . . . ’)].

(ii) Higher spatial resolution compared with Fourier

methods:

(a) Split-atom positions can be found employing only those

data providing optimal resolution at the small solution region

of the parameter space in question, thus omitting unwanted

‘noise’ caused by unimportant data, perhaps additionally

including a reduction of m (cf. test example by Kirfel &

Fischer, 2004).

(b) A relatively small number of ‘heavy atoms’, whose

partial structure amplitudes have been separated from those

of the complete many-atom structure thanks to ‘anomalous-

dispersion contrast’, may be located with a better resolution

than by, for example, deconvoluting a Patterson function (to

be used after refinement as the basis for completing the

structure). Partial structure amplitudes conform well to the

equal-atom requirement (save perhaps varied Debye–Waller

factors and/or different occupation densities). In case of

‘resonant-scattering contrast’ one may additionally consider

point-like ‘atoms’.

(c) Some types of so-called ‘pseudo-symmetric structures’,

whose ‘solution point’ X in Am is located, for example, close to
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an extreme point (x4.2.4) where the gradient of the field of

isosurfaces is rather small (for h not too large), may benefit

from the resolution power of the parameter-space concept

(and also from the next feature).

(iii) All possible solutions are provided:

(a) Uniqueness of result may be proven (hitherto not

common).

(b) All (quasi-)homometric solutions meeting the same data

set can be checked using other criteria in order to reduce their

number and eventually find a unique one.

(iv) Use of maximal experimental contrast (in analogy to

‘optical’ representation of objects): combining data with g’m

and g ’ 0 may already provide (an) approximate solution(s)

which appears impossible to obtain by Fourier analysis.

Of course, other parameter spaces may be conceived or are

already in use [e.g. for locating the centre of a given molecule

and finding its orientation parameters; see, for example, Stout

& Jensen (1970), p. 340]. In our concept, the high order of

permutation symmetry in particular permits the geometry of a

(equal-atom) point structure to be determined, within a limit

given by present computer technology and perhaps numerical

developments coming to our attention in the near future.
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ciation to Armin Kirfel’s untiring cooperation both as

professional colleague and personal friend. He contributed
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mentioned above. We also wish to thank Professor H. Burzlaff,

Erlangen-Uttenreuth, for reminding us that neutron scattering

data suffer less from data-reduction errors than do X-ray
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